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Introduction
• String theory is equipped with an intrinsic parameter, α′. In the field theory limit (α′ → 0), strings

become point-like and describe a QFT. The opposite limit, α′ → ∞, leads to the appearance of
an infinite number of massless higher-spin states in the string spectrum [1]. Moreover, most of the
powerful properties of string amplitudes are known to stem from the inherent 2d CFT structure on
the string worldsheet: soft UV behaviour, modular invariance and loop corrections, etc.

• A 2d CFT also arises in the celestial holography program, where 4d scattering amplitudes in asymp-
totically flat spacetimes are recast as conformal correlators on the celestial sphere at null infinity,
I. The resulting celestial amplitudes are tightly constrained by the symmetries of the underlying
celestial CFT (CCFT), which is expected to eventually allow for first-principles computations of
bulk physics from boundary data, similar to the well-known AdS/CFT correspondence.

• Since celestial amplitudes are obtained via Mellin transforms that integrate out energy, they are typ-
ically UV divergent in field theory–unlike in string theory, where UV-softness ensures well-defined
celestial string amplitudes [2]. We exploit this feature in our paper to relate the free worldsheet
CFT to the CCFT in the high-energy limit of string theory.

• Specifically, we relate the saddle-point approximation of string amplitudes as α′ → ∞ with a
stationary phase expansion of celestial string amplitudes for large conformal weight, at all orders.
This approach points to an intrinsic construction of CCFT by relating it to a (free) worldsheet CFT.
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Figure 1: Various limits of the 4-point open string gluon amplitude considered in this work.

Representations of string amplitudes
For canonical colour ordering, the 4-point tree-level open string (gluon) amplitude is given by

A(1, 2, 3, 4) =
Γ(1− s)Γ(1− u)

Γ(1 + t)
AYM(1, 2, 3, 4) = −AYM(1, 2, 3, 4)s

∫ 1

0
dx x−s−1(1− x)−u, (1)

with the Mandelstam invariants s = α′(p1+ p2)
2, t = α′(p1− p3)

2 (s+ t+u = 0). For closed strings,

M = π
su

t

Γ(−s)Γ(−u)Γ(−t)

Γ(s)Γ(u)Γ(t)
AYM(1, 2, 3, 4)ÃYM(1, 2, 3, 4).

In the field theory (α′ → 0) limit, one has [3]

A0 = exp


∞∑
n=1

ζ(2n)

(2n)

(
s2n + u2n − t2n

) exp


∞∑
k=1

ζ(2k + 1)

(2k + 1)

(
s2k+1 + u2k+1 + t2k+1

) AYM.

When α′ → ∞ on the other hand, we find

A+∞ =

√
2π

su

t

sin(πt)

sin(πs)
s−su−ut−t(−1)−u−t exp


∞∑
k=1

ζ(1− 2k)

(2k − 1)

(
1

s2k−1
+

1

u2k−1
+

1

t2k−1

)︸ ︷︷ ︸
(⋆)

AYM.

This expression may be understood as quantum fluctuations around the classical solution Ac to the
path integral

A ∼
∫

DgDX exp

{
− 1

4πα′

∫
dσ1dσ2

√
ggαβ∂αX

µ∂βXµ

} 4∏
i=1

Vo(pi)
α′→∞∼ Ac,

with the positions zi of the four open string vertices Vo subject to the condition

x0 ≡
(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
= −s

t
. (2)

This amounts to performing the saddle-point approximation of (1) around x0,

−s

∫ 1

0
dx x−s−1(1− x)−u =

√
2πas

1− a
Bs

1 + ∞∑
n=1

C2n

(−s)n

 , C2l = (⋆)| 1
sl
, a = −u

s
, (3)

where B = (1−a)1−a(−a)a. Subleading terms are suppressed in powers of 1
α′ and encode the effects

of integrating out massive higher-spin states at high energies. In our paper, we repeat those steps for
the Virasoro-Shapiro amplitude of closed strings and find that the single-value map [4]

svζ(2k) = 0, svζ(2k + 1) = 2ζ(2k + 1), k ≥ 1

is only valid in the low-energy regime (α′ → 0), where one has

M0 = π svA0(1, 2, 3, 4) ÃYM(1, 2, 3, 4).

String worldsheet and celestial sphere

Parametrizing massless momenta as pµ = ωqµ, qµ = 1
2(1 + |z|2, z + z̄,−i(z− z̄), 1− |z|2), with zi, z̄i

coordinates at I, the celestial string amplitude is obtained as

Ã{∆l}({zl, z̄l}) =

 n∏
k=1

∫ ∞

0
dωk ω

∆k−1
k

 δ(4)

ω1q1 + ω2q2 −
n∑

m=3

ωmqm

A({ωl, zl, z̄l}).

For (1) this yields, with Ã′
FT the field-theoretic celestial gluon amplitude [2]

Ã{∆i} = (2π)−1(α′)βÃ′
FT({∆i})a−

β
3(1− a)−

β
3I(a, β), β ≡ −1

2

4∑
k=1

(∆k − 1), (4)

with I(a, β) = −Γ(1− β)

∫ 1

0

dx

x
[ln x− a ln(1− x)]β−1 , (5)

which has poles for β = 1, 2, 3, ... As a → 0 or ∞, Ã → Ã′
FT, as one may write [2]

I(a, β) = πδ(β) +
iπ

1− e−2πiβ

∞∑
n=1

Ress=n
[
(as)−βB

(
−s, 1 +

s

r

)]
.

Thus, β = n ∈ N∗ is a soft pole of (5) associated with the exchange of massive strings at level n.
Here we perform a stationary phase approximation of I(a, β) as β → ±i∞ instead, keeping a fixed.
This also localizes on the saddle (2), meaning that the worldsheet pins onto the celestial sphere as
α′ → ∞. We then match this expansion in 1

β with the Mellin transform of (3), and find

Bα′ C2k

(α′)k
↔ (α′)β

(−1)kC2k(lnB)β−
1
2+k

cos(πβ)Γ
(
β + 1

2 + k
) ∼ (α′)k

(−1)kC2k(lnB)β−
1
2+k(

β + 1
2

)
· . . . ·

(
β − 1

2 + k
). (6)

This shows that the poles at β = −1
2,−

3
2, ... of (5) are in 1:1 correspondence with the subleading cor-

rections in 1
(α′)k

in (3). In the β-plane these effects correspond to operators with ∆k ≥ 2 and account
for higher-spin modes in the ultra-high energy regime of string theory. From (3) we see that these
are tied to combinations of ζ(1 − 2k) ∈ Q. Finally, Γ(1 − β) ∝ |β||β| as ℜ(β) → −∞, which is a
manifestation of black hole dominance [5].
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Figure 2: Complex β plane with UV (blue) and IR (red) regions and corresponding string threshold.

Conclusion
We have presented expressions for string amplitudes in the high-energy limit at tree level in flat back-
grounds, highlighting their number-theoretic properties, and showing that the sv-map is only valid as
α′ → 0. We have also established the correspondence (6) between the celestial open string amplitude
and the string amplitude as α′ → ∞, order by order in 1

α′ and 1
β . This is a first step towards a string

realization of flat-space holography, relating the worldsheet CFT to the (less understood) CCFT.

Open questions, in no particular order:

• Generalization to n ≥ 5? 1-loop? Define generic conditions for bijective map with CCFT?

• Could studying the α′ → ∞ and β → −∞ limits shed light on properties of CCFT in the IR?

• α′ → ∞∼ tensionless strings, with CCS2 ∼= BMS3 symmetry [6]. Lessons from CCFT?

• Twisted intersection theory relates α′ → 0 and α′ → ∞. What about the celestial side?

• Closed strings and KLT/double-copy relations? String monodromy on the celestial sphere?

• Relation to results in AdS? Cf, e.g., the work of Alday et al. [7]

• What is the Carrollian analogue of this picture?
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